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The mechanical response of various combinations of non-linear viscous elements
(dashpots) is analysed in this paper. It is assumed that the properties of i-th element can be
described by the relation σi =Kiξ

mi
i , where σi is the stress, ξi is the strain rate, Ki and mi are

constants (0≤mi ≤ 1). Parallel, series and combined combinations are considered. The
main object is to find out the potential for various combinations to describe the sigmoidal
variation of the flow stress, σ , with the strain rate, ξ , which is a typical feature of
superplastic materials. It is found that elements are connected in parallel as well as
elements are connected in series are characterised by non-sigmoidal dependency of the net
stress σ on the net strain rate ξ . At the same time a mixed combination with two elements
in parallel connected with a third one in series is shown to describe the sigmoidal curve
with reasonable accuracy. C© 2000 Kluwer Academic Publishers

1. Introduction
Structural superplasticity (SP) is observed in ultrafine-
grained materials (the average grain size does not ex-
ceed 10–15µm) at high temperatures (T > 0, 4Tm,
whereTm is melting point) and relatively low strain
rates (typically 10−4–10−1 s−1) [1–6]. The most impor-
tant characteristic of the superplastic flow is believed
to be the high strain rate sensitivity which is usually
referred to as

σ = K ξm, (1)

where K is material constant andm is the so-called
strain rate sensitivity index. One can rewrite Equation 1
as follows:

ξ = Cσ n, (1′)

whereC= 1/K n andn= 1/m.
If one plotted the curve determined by Equation 1

at logarithmic co-ordinates logσ–logξ , one could ob-
tained a straight line, the slope of which is equal tom.
However, experimental data can not be conventionally
fitted by such a straight line, typically one observes
the sigmoidal curve [1–6] (see Fig. 1a). That is why it
is often said in the literature that Equation 1 is to be
treated as a local approximation of the sigmoidal plot
which is valid within a sufficiently narrow strain rate
interval where the hypothesism∼= const can be adopted
with a reasonable accuracy. In a more general case the
slope of the sigmoidal curve,M , is to be taken into
consideration in analysing the mechanical response of
superplastic materials:

M = ∂ ln σ

∂ ln ξ
. (2)

The value ofM depends upon strain rate so that the
M(ξ ) dependency has a specific dome-like shape (see

Fig. 1b). The maximum,Mmax, corresponds to the op-
timum strain rateξopt for a given average grain size
and temperature of deformation. The boundaries of the
optimum strain rate interval are conventionally found
from the empirical conditionM ≥ 0.3 (see Fig. 1b).

The value of the strain rate sensitivity index,m, is
believed to be the most important characteristic of a
superplastic material. There is a number of reports in
the literature where various experimental methods to
determine the value ofm are described [7–11]. At the
same time analysis [12] shows that the value ofm de-
pends upon a number of factors: strain, strain rate, struc-
ture evolution, deformation mode and type of loading.
Therefore this parameter can not be considered as a
material constant. In the literature, the difference be-
tweenm andM is discussed only sometimes, see, for
example, [3, 7]. It is to be noted that the dependencies
m(ξ ) andM(ξ ) are not the same function, so that one
has to keep in this mind when analysing the mechanical
response of superplastic materials [13].

Presently the phenomenology of the SP phenomenon
is well investigated and many physical models of SP has
been suggested in the literature, e.g. [1–6, 14–17]. It is
usually assumed that the superplastic deformation is
effected by means of the following mechanisms: grain
boundary sliding (GBS), diffusion creep (DC) and in-
tragranular slip (IS). Correspondingly, the total plastic
strain rateξp is often assumed to be as follows:

ξp = ξGBS+ ξDC+ ξIS. (3)

The contribution of each micromechanism, e.g., GBS,
is defined as followsβGBS= ξGBS/ξ

p [6, 18, 19]. It is
often assumed that every mechanism of superplastic de-
formation is characterised by its own value of the strain
rate sensitivity indexm, e.g., for GBS it is assumed
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Figure 1 (a) Sigmoidal logσ − logξ relationship, and (b)M(=∂(logσ )/∂(logξ )) variation for a superplastic alloy (schematic).

mGBS≈ 0.5, for DC it is assumedmDC≈ 1, while for
IS it is assumedmIS≈ 0.1. The resulting value of the
strain rate sensitivity index,m, is believed to be deter-
mined by interaction of all mechanisms.

Though a number of physical models of SP phe-
nomenon have already been suggested in the literature,
it is not yet clearly understood what model (or what
combination of micromechanisms) is to be considered
as the most appropriate for the experimental data avail-
able. It is often assumed [1–6, 14–19] that the contri-
bution of GBS is of its maximum value in the vicinity
of the point of inflection of the sigmoidal curve (see
Fig. 1a). However, recently a number of reports has
been published, see, e.g. [20–24], which are not con-
sistent with this concept.

From the mechanical point of view one can consider
Equation 3 as a combination of three non-linear viscous
elements (dashpots) which are connected in series. The
properties of such a combination may be described by
the following equation:

ξp = CGBSσ
nGBS + CDCσ

nDC + CISσ
nIS, (4)

wherenGBS= 1/mGBS; nDC= 1mDC; nIS= 1/mIS and
CGBS, CDC andCIS are material constants. The follow-
ing question arises then: is it possible to describe the
standard sigmoidal curve of SP shown in Fig. 1a by
means of Equation 4? Little attention is given to this
matter in the literature. If it is not possible to describe
the sigmoidal curve by means of an appropriate choice
of material constants for Equation 4, then one should
modify Equation 4 itself so that it will be possible to
describe the sigmoidal variation of the flow stress with
strain rate.

We will assume further that the properties ofi -th ele-
ment can be described by the following simplest power
relation:

σi = Ki ξ
mi

i , i = 1, 2, . . . , N, (5)

whereσi is the stress ofi -th element;ξi is its strain
rate; Ki andmi are material constants characterising
the properties ofi -th element (0≤mi ≤ 1). Parallel, se-
ries and mixed combinations are considered below. The
abilities of such combinations to describe the standard
superplastic curves shown in Fig. 1 receive primary
consideration in our analysis. It is to be emphasised
that the physical meaning of the models under consid-
eration will not be taken into account in further analysis.
As the value of the strain rate sensitivity index,m, is not
equal to the slope of the sigmoidal curveM(ξ ), the cor-
responding theoretical expressions ofm(ξ ) and M(ξ )
functions for all combinations involved are obtained
and compared below.

2. The universal superplastic curve
Values ofMmax, σopt andξopt for different superplastic
materials are different (Fig. 2a). But when the same data
were plotted in normalised co-ordinates, (M/Mmax)
versus log(ξ/ξopt), the data points corresponding to the
different systems fell on the same curve (Fig. 2b). This
‘universal curve’ can be described by the empirical
Equation [25]

M

Mmax
= exp

[
−a2

{
log

(
ξ

ξopt

)}2
]

(6)

wherea2≡ 0.25 for a wide range of materials [25].
Substituting Equation 6 at Equation 2 one obtains

after integration

log
σ

σopt
= Mmax

∫ log ξ

ξopt

0
exp[−a2x2] dx (7)

As Fig. 2b seems to describe the flow behaviour of some
superplastic alloys rather well, it is meaningful to check
its ‘universality’ as well as the relevance of the various
physical models of superplastic deformation in terms
of this curve.
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Figure 2 Experimental dependence ofM on strain rate in (a) normal, and (b) normalised co-ordinates [25]:••••—MA21 [6]; ∆∆∆∆—
VT9 [6]; ¤¤¤¤—0. 12C18Cr10Ni1T [6];♦♦♦♦—TiAl [26]; ¥¥¥¥—Bi2O3 [27]; ⊗⊗⊗⊗—TiC [28]; ©©©©—5083 [29];××××—
Ti25Al10Nb3V1Mo [30];∗∗∗∗—Ni3Si [31].

Figure 3 Universal superplastic curves: (a)M(ξ ) andm(ξ ) dependencies calculated according to Equations 6 and 7 witha= 0.5; (b) Stress–strain
rate curves calculated according to Equation 7 with variousMmax (indicated by the numbers near the curves).

In Fig. 3 the results of calculations in accordance with
Equations 6 and 7 are presented. Since the dependen-
cies shown in Fig. 3, are common for a wide range of
materials (metals, alloys, ceramics, intermetallic com-
pounds, etc.) it seems to be reasonable to use them in
validating the physical models of SP. It is evident that an
adequate physical model of the SP phenomenon should
acceptably describe the dependenciesM(ξ ) andm(ξ )
shown in Fig. 3.

As it is already mentioned above, the attention
of many investigators of the SP phenomenon is di-
rected to the quest of reasonable combinations of el-
ementary micromechanisms of deformation. One can

make such searches more effective if one uses one
of the standard methods of the mechanics of solids,
which is known as mechanical modelling. In accor-
dance with this method each micromechanism can be
attributed to a non-linear viscous element, the prop-
erties of which are described by Equation 5. Mate-
rial response can be described by various combina-
tions of such elements. Such combinations are usually
known as mechanical models. Each mechanical model
is characterised by the number of non-linear viscous
elements and the type of connection. We will con-
sider further series, parallel and mixed connection (see
Fig. 4).
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Figure 4 Various combinations of non-linear viscous elements: (a) serial connection; (b) parallel connection; (c) combined connection.

3. Mechanical modelling of the
superplastic curve

In this chapter we consider the series, parallel and mixed
combinations of the non-linear viscous elements (see
Fig. 4).

3.1. Consequent combinations (Fig. 4a)
A number of physical models of the SP phenomenon,
known in the literature, can be considered as the conse-
quent joining of the non-linear viscous elements, e.g.,
[6, 15, 19]. In this case the total strain rate is equal to
the sum of elementary strain rates:

ξ = ξ1+ ξ2+ · · · + ξk =
k∑

i=1

Ciσ
ni

= β1ξ + β2ξ + · · · + βkξ (8)

whereβi = ξi /ξ is the contribution ofi -th element.
It is evident thatβ1 + β2 + · · ·βk= 1; 0≤βi ≤ 1
(i = 1, 2, . . . , k). One can see that Equation 8 transfers
into Equation 4 whenk= 3.

Let now σs= σ (ξs) be some characteristic value of
the stress. We will call this thereference point. In
particular (but not necessarily) the reference pointσs,
ξs may coincide with the point of inflection of the
sigmoidal curveσopt, ξopt (see Fig. 1a). Let us de-
note the contributions of various elements atξ = ξs
throughβ1s, β2s, . . . , βks: βi sξs=Ciσ

ni
s (i = 1, 2, . . . ,

k; β1s+β2s+ · · ·+βks= 1). Then one can excludeCi

from Equation 8:

ξ̄ = β1sσ̄
n1 + β2sσ̄

n2 + · · · + βksσ̄
nk = σ̄ nc (8a)

whereσ̄ = σ/σs andξ̄ = ξ/ξs are normalised stress and
strain rate respectively,nc= 1/mc, wheremc is an ef-
fective value of the strain rate sensitivity index,m, for
the chain under consideration. It should be mentioned
that the contributionβi s is of i -th element atξ = ξs; is
not equal to that atξ 6= ξs. It can be shown that

βi = βi s
σ̄ ni

ξ̄
(i = 1, 2, . . . , k). (9)

On the other hand, the introduction ofβi s leads to the
values ofCi being unambiguously determined by the re-
lationshipsCi =βi sξs/σ

ni
s (i = 1, 2, . . . , k). Similarly,

introducingCi unambiguously determines the values of
βi s by means of the following relations:βi s=Ciσ

ni
s /ξs

(i = 1, 2, . . . , k). The slope of the sigmoidal curve is de-
fined as 1/M = d logξ/d logσ = d logξ̄ /d logσ̄ . It is
easy to show that

Mc(ξ ) = β1sσ̄
n1 + β2sσ̄

n2 + · · · + βksσ̄
nk

β1sn1σ̄ n1 + β2sn2σ̄ n2 + · · · + βksnkσ̄ nk
,

(10)

whereσ̄ = σ̄ (ξ̄ )= ξ̄mc is the solution of the transcen-
dental Equation 8a, the symbol “c” is used in order to
indicate that correspondingm- and M-values refer to
the case of serial joining. It may be shown that

lim
ξ→0

Mc(ξ ) = lim
ξ→0

mc(ξ ) = mmax= max
i=1,2,...,k

mi ;

(11a)

lim
ξ→∞

Mc(ξ ) = lim
ξ→∞

mc(ξ ) = mmin = min
i=1,2,...,k

mi .

(11b)
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Figure 5 Theoretical dependencies calculated for the serially connected chain withk= 3, m1= 1, m2= 0.5, m3= 0.1, β1s= 0.25, β2s= 0.5,
β3s= 0.25: (a) stress–strain rate curve (Equation 8); (b)Mc(ξ ) curve (solid line—Equation 10) andmc(ξ ) curve (dashed line—Equation 8a);
(c) contributionsβi (Equation 9).

Thus, at low strain rates (ξ/ξs→ 0) the values ofMc
andmc tend tommax, while at largeξ (ξ/ξs→∞) they
tend tommin (wheremmax andmmin are the maximum
and minimum values ofmi for the chain under consid-
eration).

In Fig. 5 the strain rate dependencies for ¯σ andMc,
mc and contributionsβi (i = 1, 2, 3) are presented. One
can see in Fig. 5a, that the curve log ¯σ− log ξ̄ is convex.
The values ofMc andmc decrease monotonically with
ξ (Fig. 5b). At low ξ the element with maximumm
(mmax=m1= 1) dominates, so thatβ1→ 1 with ξ→ 0
(see Fig. 5c). At largeξ the element with minimum
m (mmin=m3= 0.1) makes the main contribution, so
thatβ3→ 1 with ξ→∞ (see Fig. 5c). The contribu-
tion of the non-linear viscous elementm2= 0.5 is of its
maximum value for intermediate strain rates (Fig. 5c).

The following natural question arises then: is it pos-
sible to describe the sigmoidal superplastic curve by
connecting additional elements to the chain (Fig. 3a)
and by varying their relative contributionsβi s? We
have fulfilled a number of additional numerical ex-
periments in order to answer this question. We have
varied the number of elements at the chain (the cal-
culations were fulfilled fork= 2, 3, 4, 5) as well as
their relative contributionsβ1s, β2s, . . . , βks and strain
rate sensitivity indexesm1,m2, . . . ,mk. The results
of calculations show that the values ofMc(ξ ) and
mc(ξ ) decrease monotonically frommmax= max{mi }
to mmin= min{mi } for all cases considered. Thus, we
have concluded that the consequent combinations of
elements are always characterised by convex (that is,
non-sigmoidal) curve log ¯σ − log ξ̄ for arbitrarymi ≥ 0
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andβi s≥ 0 (i = 1, 2, . . . , k). Hence, the physical mod-
els based upon the hypothesis of additivity (similar to
Equation 4)are not capable of describing the sigmoidal
curve of SP. That is why it is of interest to consider
other possible ways to combine the non-linear viscous
elements into the mechanical model.

3.2. Parallel combinations (Fig. 4b)
In this case each element makes a contribution to the to-
tal stress. For example, for the case when two non-linear
viscous elements are connected in parallel one has

σ = K1ξ
m1 + K2ξ

m2. (12)

One can find a number of physical models in the
literature that may be presented as a parallel combi-
nations of non-linear viscous elements. For instance,
the so-called “threshold stress” can be taken into
consideration in describing the mechanical response of
superplastic materials, see, e.g. [32]. In this case one
can assumem1→ 0.∗ On the other hand, recently it
was reported [33] that Equation (12) (with non-zerom1
and m2) may be successfully applied to superplastic
aluminium 7075 and Al-4%Ti alloys (the value of the
coefficient of correlation exceeds 0.999 for all exper-
imental curves). Expressions similar to Equation (12)
are widely used in the mechanics of composites; it may
be used in order to simulate the rheological behaviour
of two-phase titanium alloys as well.

For the case whenr non-linear viscous elements are
connected in parallel, we have:

σ =
r∑

i=1

Ki ξ
mi = α1σ + α2σ + · · · + αrσ, (13)

whereαi = σi /σ is the contribution ofi -th element to
the total stress. Let, for some reference pointσq= σ (ξq),
the contributions be equal toα1q, α2q, . . . , αr q respec-
tively, then one can rewrite Equation 13 as follows

σ̄ =
r∑

i=1

αi qξ̄
mi = ξ̄mp, (14)

whereσ̄ = σ/σq, ξ̄ = ξ/ξq, mp is an effective value of
the strain rate sensitivity index,m, for a combination
under consideration. The contributions of elements de-
pends upon strain rate. One can obtain that

αi = σi

σ
= αi q

ξ̄mi

σ̄
, i = 1, 2, . . . , r, (15)

whereξ̄ is the solution of the transcendental Eq. (14).
Substituting Equation 14 into Equation 2 we obtain

Mp = α1qm1ξ̄
m1 + α2qm2ξ̄

m2 + · · · + αr qmr ξ̄
mr

α1pξ̄m1 + α2qξ̄m2 + · · · + αr qξ̄mr
,

(16)

∗ It should be noted, that for the limiting casem1→ 0 the following un-
certainty takes place: if atξ 6= 0 andm1→ 0 the value ofσ→ K1 6= 0,
then atξ ≡ 0 whenm→ 0 the flow stressσ ≡ 0.

It may be shown that

lim
ξ→0

Mp(ξ ) = lim
ξ→0

mp(ξ ) = mmin = min
i=1,2,...,r

mi ;

(17a)
lim
ξ→∞

Mp(ξ ) = lim
ξ→∞

mp(ξ ) = mmax= max
i=1,2,...,r

mi .

(17b)

Thus, at low strain rates (ξ/ξq→ 0) the values ofMp

andmp tend tommin, while at largeξ (ξ/ξp→∞) they
tend tommax (wheremmin andmmax are the minimum
and maximum values ofmi at the mechanical model
under consideration).

In Fig. 6 the theoretical strain rate dependencies of
σ , mp- and Mp-values are presented. One can see in
Fig. 6a, that the curve log ¯σ − log ξ̄ is concave. The
values of Mp and mp increase monotonically with
ξ (Fig. 6b). At low ξ the element with minimum
m (mmin=m3= 0.1) dominates, so thatα3→ 1 with
ξ→ 0 (see Fig. 6c). At largeξ the element with maxi-
mumm (mmax=m1= 1) makes the main contribution,
so thatα1→ 1 with ξ→∞ (see Fig. 5c). The contribu-
tion of the non-linear viscous elementm2= 0.5 is at its
maximum value for intermediate strain rates (Fig. 6c).

The following natural question arises then: is it pos-
sible to describe the sigmoidal curve by connecting ad-
ditional elements to the model shown in Fig. 4b and by
varying their relative contributionsαi q? We have ful-
filled a number of additional numerical experiments in
order to answer this question. We have varied the num-
ber of elements at the model (the calculations were
fulfilled for r = 2, 3, 4, 5) as well as their relative con-
tributionsα1q,α2q, . . .,αr q and strain rate sensitivity in-
dexesm1, m2, . . ., mr . The results of calculations show
that the values ofMp(ξ ) and mp(ξ ) increase mono-
tonically frommmin=min{mi } to mmax=max{mi } for
all cases considered. Thus, we have concluded that the
parallel combinations of non-linear viscous elements
are always characterised by a concave (that is, non-
sigmoidal) log ¯σ − log ξ̄ curve for arbitrarymi ≥ 0 and
αi q≥ 0 (i = 1, 2, . . . , r ). Hence, the physical models
based upon the hypothesis of simple additivity of the
stresses due to different mechanisms (similar to Eq. 12)
are not capable of describing the sigmoidal curve of SP.

3.3. Mixed combinations (Fig. 4c)
If one compares Figs 5b and 6b, one could conclude
that series and parallel connection are characterised by
monotonic dependenciesM(logξ ) andm(logξ ). Actu-
ally, the Mc(logξ ) andmc(logξ ) plots are decreasing
ones whileMp(logξ ) andmp(logξ ) curves are increas-
ing ones. Hence, one can expect that the mixed combi-
nation allows to give some intermediate non-monotonic
dependencies ofm(logξ ) andM(logξ ). There are only
a few examples in the literature where such mixed com-
binations are considered. Zehr and Backofen [34] have
considered a mixed combination in order to describe the
mechanical response of the superplastic lead–tin eutec-
tic alloy. Recently Perevezentcevet al.have suggested
a new physical model of the SP phenomenon [14],
which describes the sigmoidal variation ofσ with ξ .
This model is rather cumbersome and so it is not an
easy task to proceed using all the calculations presented
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Figure 6 Theoretical dependencies calculated for the parallel combination of non-linear viscous elements withr = 3, m1= 1, m2= 0.5, m3= 0.1,
α1q= 0.25, α2q= 0.5, α3q= 0.25: (a) stress–strain rate curve (Equation 14); (b)Mp(ξ ) curve (solid line—Equation 16) andmp(ξ ) curve (dashed
line—Equation 14’); (c) contributionsαi (Equation 15).

in [14]. Nevertheless, proceeding from a number of
other publications of Perevethentcevet al.one can con-
clude that they are using the principle of mixed con-
nection in summing the strain rates corresponding to
different micromechanisms. Such an approach enables
them to describe the experimental sigmoidal curve for
titanium alloy Ti-6Al-4V, which has been reported by
Ghosh [35]. That is why it is of interest to consider
other possible ways to combine the non-linear viscous
elements into the mechanical model.

Let us consider the mixed combination consisting of
three elements (Fig. 4c). The behaviour of this combi-
nation is described by the following equations:

σ = K1ξ
m1

1 + K2ξ
m2

2 = K3ξ
m3

3 ,

ξ1 = ξ2, ξ = ξ1+ ξ3, (18)

whereξi (i = 1, 2, 3) are the strain rates ofi -th element;
K i , mi (i = 1, 2, 3) are the material constants. One can
write the following relationships. For some reference
pointσ = σ (ξ0) we obtain

σ0 = K1ξ
m1

10 + K2ξ
m2

20 = α10σ0+ α20σ0,

ξ0 = ξ10+ ξ30 = β10ξ0+ β20ξ0. (19)

Taking into account Equation 19 one can find from
Equation 18:

σ̄ = α10

β
m1

10

(ξ̄−ξ̄3)m1+ α20

β
m2

20

(ξ̄−ξ̄3)m2 = 1

β
m3

30

ξ̄
m3

3 = ξ̄mm,

(20)

whereσ̄ = σ/σ0, ξ̄ = ξ/ξ0 and it is taken into account
that ξ̄1= ξ̄2= ξ̄ − ξ̄3. It is easy to see that for a given
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Figure 7 Strain rate dependencies ofM-values (solid lines) andm-values (dashed lines) calculated in accordance with Equations 6, 7, 20 and 21 with
two different sets of material constants: (a)m1= 1; m2= 0.5; m3= 0.1 α10= 0.5; β10= 0.5 (Mm andmm-curves); (b)m1= 1; m2= 0.1; m3= 0.5
α10= 0.5; β10= 0.5 (Mm andmm-curves).Mu andmu-curves have been calculated witha= 0.5 andMmax= 1.

value of the strain rateξ Equation 20 represents a tran-
scendental equation as to the unknown functionξ̄3. The
value ofM for a mixed model may be found as follows:

1

Mm(ξ̄ )
= ξ̄3

m3ξ̄

+ ξ̄
m3

3

β
m3

30

1− ξ̄3/ξ̄

ᾱ10m1(ξ̄ − ξ̄3)m1 + ᾱ20m2 (ξ̄ − ξ̄3)m2
,

(21)

whereᾱi 0=αi 0/β
mi

i 0 (i = 1, 2), andξ̄3 is the solution of
Equation 20. One can show that

lim
α→0

Mm(ξ̄ ) = Mc; lim
β3→0

Mm(ξ̄ ) = Mp;

lim
ξ̄3→ξ̄

Mm(ξ̄ ) = m3 (22)

The results of calculations in accordance with Equa-
tions 20 and 21 are presented in Fig. 7. One can see in
Fig. 7, that the correspondingMm(logξ ) dependencies
has non-monotonic character. However, there is a con-
siderable difference betweenMm(logξ ) plots and the
corresponding universal dependencyMu(logξ ). That
is why we have fulfilled a number of additional calcu-
lations with various values of material constantsm1,
m2, m3, α10, andβ10. As a result, good agreement be-
tweenMm(logξ ) and Mu(logξ ) curves as well as be-
tweenmm(logξ ) andmu(logξ ) curves has been found
(see Fig. 8). It is to be noted that the set of constants
enabling one to describe adequately the universal su-
perplastic curves is not the only possible one. One can
find a number of other sets in Table I. The last column of
Table I includes the standard mean square deviation1

for the results of calculation from the universal super-
plastic curve shown in Fig. 2b. It is evident that one can
find some possible sets of material constants describ-

TABLE I Sets of material constants for Equations 20 and 21 allowing
one to describe the universal superplastic curve shown in Fig. 2b

m1 m2 m3 α10 α20 β10 β20 1

1 0,18 0,26 0,94 0,06 0,9999 0,0001 0,05
1 0,1 0,46 0,96 0,04 0,97 0,03 0,05
1 0,4 0,25 0,87 0,13 0,9999 0,0001 0,09
1 0,3 0,25 0,90 0,10 0,9999 0,0001 0,06
1 0,33 0,25 0,88 0,12 0,9999 0,0001 0,07
1 0,2 0,5 0,94 0,06 0,92 0,08 0,08

ing the universal superplastic curves with a reasonable
accuracy.

Zehr and Backofen have applied a mixed mechanical
model to eutectic lead–tin alloy [34]. The values of
the material constantsK i andmi have been determined
in [34] empirically from the experimental sigmoidal
curves. The results obtained in [34] are incorporated
into Table II. In order to use these data let us substitute
Equation 18 at Equation 2. Then we obtain after some
transforms:

MZB = [
m1K1ξ

m1

1 +m2K2ξ
m2

2

]
ξ

ξ − ξ1
m3

m1K1ξ
m1

1 +m2K2ξ
m2

2 + ξ

ξ − ξ1
m3K3(ξ − ξ1)m3

(23)

whereξ1 is the solution of the following transcendental
equation:

σ = K1ξ
m1

1 + K2ξ
m2

1 = K3(ξ − ξ1)m3 (24)

The results of calculations in accordance with Equa-
tions 23 and 24 are presented in Fig. 9. The values of
mi and K i (i = 1, 2, 3) used in calculations have been
taken from Table II.
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Figure 8 Strain rate dependencies ofM-value (a) andm-value (b) for a mixed combination, calculated in accordance with Equations 20 and 21 with
m1= 1; m2= 0.18;m3= 0.26α10= 0.94;β10= 0.9999. For the sake of comparison the corresponding universal curves calculated in accordance with
Equations 6 and 7 withMmax= 1 are presented by dashed lines.

TABLE I I Material constants for Zehr–Backofen model [34]

Element’s properties (units: lb, in, sec)
d0 T

Material (µm) (◦C) T/Tm K1 m1 K2 m2 K3 m3

Pb-Sn 2,0 26 0,65 6,70× 105 1 1,15× 104 0,33 1,27× 104 0,18
[34] 3,1 2,50× 106 2,23× 104 0,33 2,26× 104 0,24
Pb-Sn 2,0 25 0,65 4,20× 106 1 1,11× 104 0,33 1,9× 104 0,21
[35]
Pb-Sn 2,2 25 0,65 1,65× 106 1 1,27× 104 0,34 1,68× 104 0,25
[36] 4,1 1,06× 107 8,47× 103 0,28 2,2× 104 0,25
Al–Cu 2,3 520 0,97 2,2× 105 1 2,63× 103 0,33 1,17× 104 0,25
[37] 7,7 2,46× 106 2,77× 102 0,11 3,54× 104 0,39

It is pertinent to note that for the case when all
non-linear viscous elements contained in the me-
chanical model under consideration have the same
value of the strain rate sensitivity index (that is,
m1=m2= · · · =m0) then independently of the type
of connection the following relationships take place:
M =m=m0. This fact is a consequence of Equa-
tions 8a, 10, 14, 16, 20 and 21.

4. Discussion
The results obtained enable us to conclude that for
the case of serial (Fig. 4a) or parallel (Fig. 4b) con-
nection, the resulting logσ–logξ curve are not sig-
moidal irrespective of the number of elements con-
tained in the mechanical model under consideration. At
the same time the mechanical model with mixed con-
nection (Fig. 4c) enables one to describe adequately the
universal sigmoidal curve shown in Fig. 2b.

Recently Padmanabhan and Schliepf have presented
an analysis of the boundary sliding process [16], which
leads to new model for GBS controlled optimal struc-
tural SP. A numerical procedure that allows the unam-

biguous determination of the material constants of this
model has been presented and validated by analysing
the experimental data pertaining to a few systems in
[38]. It was shown that this method allows the deter-
mination of the material constants with a limited num-
ber of experimental points. A comparison of the pre-
dictions with the experimental results shows that this
model describes optimal superplastic flow (Regions I
and II up to the point of inflection in the sigmoidal
logσ − logξ curve) accurately. The shape of the uni-
versalM-curve on the left hand side ofξopt is similar
to that of the theoretical curves calculated within the
framework of Padmanabhan–Schliepf model for dif-
ferent alloys (see Fig. 10). The curves actually coin-
cide (true universal curves) when the (T/Tm) ratios are
similar. But the shapes are different on the right hand
side ofξopt. It was found in [38] that the mechanical
analogue of Padmanabhan–Schliepf model of the SP
phenomenon [16] includes two dashpots (one of which
is Newtonian viscous) in series connected to a constant
stress term in parallel (see Fig. 10).

It was established in [38] that a ‘universal curve’
for superplastic flow existsprovidedthe (M/Mmax) vs.
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Figure 9 Sigmoidal superplastic curves and corresponding dependencies of their slopesM on the strain rate calculated in accordance with Equations
23 and 24 for eutectic alloys lead–tin (a) and aluminium–copper (b).

log(ξ/ξopt) plot is made at constant (T/Tm) ratio. In
other words, the value of the parameter ‘a’ at the right
side of Equations 6 and 7, in general, depends upon tem-
perature. Typical values of ‘a’ according to [38] turned
out to be of about 0.5–0.7 for a number of aluminium-
base alloys. We have fulfilled a number of additional
calculations witha= 0.7. It was found that mixed com-
binations allows one to describe the corresponding uni-
versal curves witha= 0.7 as well (see Fig. 11). We have
reported earlier some results of the calculations similar
to above considered [39]. In this work the value of pa-
rameter ‘a’ in Equation 6 has been occasionally taken
equal to 0.25 and a good agreement was found for the
set of material constantsm1= 1; m2= 0.2; m3= 0.5,
α10= 0.99,β10= 0.99.

It is to be emphasized that the narrowing of the op-
timum strain rate interval (the contraction of Region II
in Fig. 1b) with temperature of deformation is a typi-
cal experimental fact. Unfortunately, little attention is

given to this in the literature. At the same time the con-
traction of Region II withT is as universal a fact for
the phenomenology of the SP phenomenon as the sig-
moidal variation of the flow stress with strain rate. That
is why it is very important to keep in mind this circum-
stance when constructing adequate models of the SP
phenomenon. Empirically, the narrowing of Region II
with T can be described by use of Equations 6 or 7
where the value of ‘a’ depends uponT (see Fig. 11).
It is pertinent to note that the physical reasons for ex-
istence of such phenomenon can be clearly explained
within the framework of the new concept of the SP
phenomenon, which is developed in [24].

The results obtained in the present work indicate that
there is a problem in taking into account the simul-
taneous action of different deformation mechanisms.
It is not yet clear what kind of summation is to be
used in doing so. For example, one can use the ad-
ditivity of the strain rates corresponding to different
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micromechanisms similar to Equation 4. In this case
the stress is assumed to be the same for all micromech-
anisms involved while each of them contributes to the
net value of the strain rate. On the contrary, it is possible
to assume that the total strain rate is the same for all mi-
cromechanisms while each of them contributes to the
total stress and so use Equation 13 in order to describe
the net response of a superplastic material. It is possible

Figure 10 Mechanical analogue of the Padmanabhan–Schliepf model
and theoretical (M/Mmax) vs. log(ξ/ξopt) plots at comparable (T/Tm)
ratio for the following alloys (solid lines) [38]: (1) Zn-22%Al, 503 K,
(T/Tm)= 0.918; (2) Supral alloy, 743 K, (T/Tm)= 0.911.©©©©
Al5083 deformed at (T/Tm)= 0.922 [29]. The original ‘universal curve’
corresponding toa= 0.5 is also shown by dashed line.

Figure 11 Strain rate dependencies ofM-values for universal superplastic curves (solid lines) calculated according to Equation 6 withMmax= 1 and
two different values ofa (indicated by the numbers near the curve) and correspondingM— logξ dependencies for mixed mechanical model (dashed
lines) calculated in accordance with Equations 20 and 21 with different sets of material constants calculated in accordance with Equation 21 with
two different sets of material constants: (a)m1= 1; m2= 0.001; m3= 0.34 α10= 0.94; β10= 0.96 (1= 0.08); (b) m1= 1; m2= 0.15; m3= 0.29
α10= 0.9; β10= 0.995 (1= 0.10).

to consider some intermediate situations as well (e.g.,
mechanical models shown in Figs 4c and 10).
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