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Mechanical modelling of the universal
superplastic curve
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The mechanical response of various combinations of non-linear viscous elements
(dashpots) is analysed in this paper. It is assumed that the properties of i-th element can be
described by the relation ¢; = K,-s,.m", where o; is the stress, &; is the strain rate, K; and m; are
constants (0 < m; < 1). Parallel, series and combined combinations are considered. The
main object is to find out the potential for various combinations to describe the sigmoidal
variation of the flow stress, o, with the strain rate, &, which is a typical feature of
superplastic materials. It is found that elements are connected in parallel as well as
elements are connected in series are characterised by non-sigmoidal dependency of the net
stress o on the net strain rate £. At the same time a mixed combination with two elements
in parallel connected with a third one in series is shown to describe the sigmoidal curve
with reasonable accuracy. © 2000 Kluwer Academic Publishers

1. Introduction Fig. 1b). The maximumMmayx corresponds to the op-
Structural superplasticity (SP) is observed in ultrafinetimum strain rateqp for a given average grain size
grained materials (the average grain size does not exand temperature of deformation. The boundaries of the
ceed 10-15um) at high temperaturesT(> 0, 4T,,  Ooptimum strain rate interval are conventionally found
where Ty, is melting point) and relatively low strain from the empirical conditioM > 0.3 (see Fig. 1b).
rates (typically 10°-10 1 s~1) [1-6]. The mostimpor- ~ The value of the strain rate sensitivity indew, is
tant characteristic of the superplastic flow is believedbelieved to be the most important characteristic of a
to be the high strain rate sensitivity which is usually superplastic material. There is a number of reports in
referred to as the literature where various experimental methods to

o = KEM (1) determ_ine the vaIL_Je oh are described [7-11]. At the

’ same time analysis [12] shows that the valuenode-

where K is material constant anmh is the so-called pends uponanumber of factors: strain, strain rate, struc-
strain rate sensitivity index. One can rewrite Equation lture evolution, deformation mode and type of loading.

as follows: Therefore this parameter can not be considered as a
£=Co" @) material constant. In the literature, the difference be-
tweenm and M is discussed only sometimes, see, for

whereC =1/K" andn=1/m. example, [3, 7]. Itis to be noted that the dependencies

If one plotted the curve determined by Equation 1m(g) and M (&) are not the same function, so that one
at logarithmic co-ordinates lag-logé, one could ob-  has to keep in this mind when analysing the mechanical
tained a straight line, the slope of which is equaifrto response of superplastic materials [13].

However, experimental data can not be conventionally Presently the phenomenology of the SP phenomenon
fitted by such a straight line, typically one observesis wellinvestigated and many physical models of SP has
the sigmoidal curve [1-6] (see Fig. 1a). That is why itheen suggested in the literature, e.g. [1-6, 14—17]. Itis
is often said in the literature that Equation 1 is to beysually assumed that the superplastic deformation is
treated as a local approximation of the sigmoidal ploteffected by means of the following mechanisms: grain
which is valid within a sufficiently narrow strain rate poundary sliding (GBS), diffusion creep (DC) and in-
interval where the hypothesis= const can be adopted tragranular slip (IS). Correspondingly, the total plastic

with a reasonable accuracy. In a more general case thgrain ratesP is often assumed to be as follows:
slope of the sigmoidal curve\, is to be taken into

consideration in analysing the mechanical response of &P = £gps + &pc + &is. (3)
superplastic materials:
alno The contribution of each micromechanism, e.g., GBS,
= . (2) is defined as follow#ces = éces/EP [6, 18, 19]. Itis
dIng often assumed that every mechanism of superplastic de-
The value ofM depends upon strain rate so that theformation is characterised by its own value of the strain
M (&) dependency has a specific dome-like shape (semte sensitivity indexn, e.g., for GBS it is assumed
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Figure 1 (a) Sigmoidal logr — logé& relationship, and (bM(=d(logo)/d(log€)) variation for a superplastic alloy (schematic).

mges~ 0.5, for DC it is assumednpc ~ 1, while for  wherego; is the stress of-th element; is its strain
IS it is assumedn;s ~ 0.1. The resulting value of the rate; K; andm; are material constants characterising
strain rate sensitivity indexm, is believed to be deter- the properties af-th element (G< m; < 1). Parallel, se-
mined by interaction of all mechanisms. ries and mixed combinations are considered below. The
Though a number of physical models of SP phe-abilities of such combinations to describe the standard
nomenon have already been suggested in the literatursyperplastic curves shown in Fig. 1 receive primary
it is not yet clearly understood what model (or whatconsideration in our analysis. It is to be emphasised
combination of micromechanisms) is to be consideredhat the physical meaning of the models under consid-
as the most appropriate for the experimental data availeration will not be taken into account in further analysis.
able. It is often assumed [1-6, 14—19] that the contri-As the value of the strain rate sensitivity index,is not
bution of GBS is of its maximum value in the vicinity equal to the slope of the sigmoidal cuivK), the cor-
of the point of inflection of the sigmoidal curve (see responding theoretical expressionsnog) and M (&)
Fig. 1a). However, recently a number of reports hadunctions for all combinations involved are obtained
been published, see, e.g. [20—-24], which are not conand compared below.
sistent with this concept.
From the mechanical point of view one can considerz The universal superplastic curve

Equation 3 as a combination of three non-linear viscoug/a|ues ofMpay, oopt @Ndéqp for different superplastic
elements (dashpots) which are connected in series. Thgaterials are different (Fig. 2a). Butwhen the same data
properties of such a combination may be described byare plotted in normalised co-ordinate$fl (Mmax)

the following equation: versus logf /£qp), the data points corresponding to the
different systems fell on the same curve (Fig. 2b). This
£P = Cgpso™®s + Cpco™® + Ciso™s,  (4)  universal curve’ can be described by the empirical
Equation [25]
WherenGBS= 1/mGBS; Npc = 1ch; Nis = l/m|s and M é;_ 2
Ccgs, Cpc andCs are material constants. The follow- = exp|:—a2{log<—> } :| (6)
ing question arises then: is it possible to describe the Mmax Sopt

standard sigmoidal curve of SP shown in Fig. 1a by

means of Equation 47 Little attention is given to thiswherea? = 0.25 for a wide range of materials [25].
matter in the literature. If it is not possible to describe  Substituting Equation 6 at Equation 2 one obtains
the sigmoidal curve by means of an appropriate choiceafter integration

of material constants for Equation 4, then one should

modify Equation 4 itself so that it will be possible to o log =
describe the sigmoidal variation of the flow stress with log— = Mmax/ exp[-a®°]dx  (7)
strain rate. opt 0

We will assume further that the properties dh ele-
ment can be described by the following simplest powe
relation:

s Fig. 2b seems to describe the flow behaviour of some
superplastic alloys rather well, it is meaningful to check
its ‘universality’ as well as the relevance of the various
physical models of superplastic deformation in terms
o =Kg™, i=12...,N, (5)  of this curve.
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Figure 2 Experimental dependence & on strain rate in (a) normal, and (b) normalised co-ordinates [88pe—MA21 [6]; AAAA—
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Figure 3 Universal superplastic curves: (8)(¢) andm(&) dependencies calculated according to Equations 6 and 7awtB.5; (b) Stress—strain
rate curves calculated according to Equation 7 with varMygx (indicated by the numbers near the curves).

In Fig. 3the results of calculations in accordance withmake such searches more effective if one uses one
Equations 6 and 7 are presented. Since the dependeof the standard methods of the mechanics of solids,
cies shown in Fig. 3, are common for a wide range ofwhich is known as mechanical modelling. In accor-
materials (metals, alloys, ceramics, intermetallic com-dance with this method each micromechanism can be
pounds, etc.) it seems to be reasonable to use them attributed to a non-linear viscous element, the prop-
validating the physical models of SP. Itis evident that arerties of which are described by Equation 5. Mate-
adequate physical model of the SP phenomenon shoulill response can be described by various combina-
acceptably describe the dependend&) andm(¢)  tions of such elements. Such combinations are usually
shown in Fig. 3. known as mechanical models. Each mechanical model

As it is already mentioned above, the attentionis characterised by the number of non-linear viscous
of many investigators of the SP phenomenon is di€lements and the type of connection. We will con-
rected to the quest of reasonable combinations of elsider further series, parallel and mixed connection (see
ementary micromechanisms of deformation. One carfig. 4).
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Figure 4 Various combinations of non-linear viscous elements: (a) serial connection; (b) parallel connection; (c) combined connection.

3. Mechanical modelling of the whereo = o /o5 andé = & /& are normalised stress and
superplastic curve strain rate respectively. = 1/m¢, wherem is an ef-
Inthis chapter we consider the series, parallel and mixeékctive value of the strain rate sensitivity indew, for
combinations of the non-linear viscous elements (seénhe chain under consideration. It should be mentioned
Fig. 4). that the contributiorg;s is of i -th element at =&g; is
not equal to that & # &s. It can be shown that

3.1. Consequent combinations (Fig. 4a) —

A number of physical models of the SP phenomenon, Bi = 5isg_ i=12....Kk). (9)

known in the literature, can be considered as the conse-

quent joining of the non-linear viscous elements, e.g.,

[6, 15, 19]. In this case the total strain rate is equal toOn the other hand, the introduction gf; leads to the

the sum of elementary strain rates: values ofC; being unambiguously determined by the re-
lationshipsC; = Bis&s/od (i=1,2,...,K). Similarly,

K n introducingC; unambiguously determines the values of
§=8t6H+ - +&= Z Cio Bis by means of the following relationg;s = Cio " /&
i . . S .
=1 (i=1,2,...,k). Theslope ofthe sigmoidal curve is de-
= P& + BoE + -+ P& (8) finedas ¥M =d log&/d logo =d log&/d logo. Itis

easy to show that
where g =& /& is the contribution ofi-th element.

—~Np —~No . N
It is evident thatB; + B> + ---Bk=1; 0<B <1 Mc(€) = ﬂlia +,3sz_ + -+ Bkso k_ |
(i=1,2,...,k). One can see that Equation 8 transfers Bisnio™ + Boghoo™ + - - - + PysNko ™
into Equation 4 whek = 3. (10

Let nowos=o(&s) be some characteristic value of whereo =o(¢) =£&™ is the solution of the transcen-
the stress. We will call this theeference pointin dental Equation 8a, the symbol “c” is used in order to
particular (but not necessarily) the reference poit indicate that corresponding- and M-values refer to
& may coincide with the point of inflection of the the case of serial joining. It may be shown that
sigmoidal curveoop, &opt (see Fig. 1a). Let us de-

note the contributions of various elementséat &s lim Mc(8) = lim me(€) = Mmax=_max m;;
throughpas, Bes, - - -, Bks Piss=Ciod (i=1,2,..., §-0 §-0 1=1.2....
K; Bis+ B2s+ - - -+ Bks=1). Then one can excludg (11a)
from Equation 8: . i )
lim Mc(€) = lim me(§) = Mpin=_min  m;.
_ E—>o0 E—>o0 i=12,...k
E=Pr10™M+ P04+ Pso™ =0 (8a) (11b)
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Figure 5 Theoretical dependencies calculated for the serially connected chainkwit® m; =1, mp=0.5, m3=0.1, B15=0.25, B2s=0.5,
B3s=0.25: (a) stress—strain rate curve (Equation 8); MaX&) curve (solid line—Equation 10) anah:(¢) curve (dashed line—Equation 8a);
(c) contributionss; (Equation 9).

Thus, at low strain rateg (&5 — 0) the values oM.
andm tend tompax, While at larget (£ /& — o0) they
tend tompin (Wherempmax andmpi, are the maximum
and minimum values afy for the chain under consid-

eration).

In Fig. 5 the strain rate dependencies doand Mc,
mc and contributiong; (i =1, 2, 3) are presented. One varied the number of elements at the chain (the cal-
can see in Fig. 5a, that the curve log-Tog & is convex.

The values oM. andm, decrease monotonically with their relative contributiongis, Bos, . .

& (Fig. 5b). At low ¢ the element with maximurm
(Mmax=my = 1) dominates, so th# — 1 with&é — 0
(see Fig. 5c). At largé the element with minimum
m (Mmin = Mz = 0.1) makes the main contribution, so to myi, = min{m;} for all cases considered. Thus, we
that 83 — 1 with £ — oo (see Fig. 5¢). The contribu-
tion of the non-linear viscous eleman = 0.5 is of its
maximum value for intermediate strain rates (Fig. 5¢).non-sigmoidal) curve log — log & for arbitrarym; >0

The following natural question arises then: is it pos-
sible to describe the sigmoidal superplastic curve by
connecting additional elements to the chain (Fig. 3a)
and by varying their relative contributiongs? We
have fulfiled a number of additional numerical ex-
periments in order to answer this question. We have

culations were fulfilled fork =2, 3, 4,5) as well as
., Bks and strain
rate sensitivity indexesn;, mp, ..., mg. The results
of calculations show that the values ®4;(¢) and
mc(&) decrease monotonically fromyax= maxm;}

have concluded that the consequent combinations of
elements are always characterised by convex (that is,
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andgis>0(=12,...,Kk). Hence, the physical mod- It may be shown that

els based upon the hypothesis of additivity (similarto . .

Equation 4)are not capable of describing the sigmoidal EI'LnO Mp(§) = E"Tomp(f) = Mmin =, TN M;;

curve of SPThat is why it is of interest to consider (17a)

other possible ways to combine the non-linear viscous |im M (€) = lim My(£) = Mmax=_ max m;.

elements into the mechanical model. foo0 © foo0 © i=12 (17b)
17

3.2. Parallel combinations (Fig. 4b) Thus, at low strain rateg (§ — 0) the values oM,
In this case each element makes a contribution to the te@ndmp tend tommin, while at larges (¢ /6, — oo) they

tal stress. For example, for the case when two non-lined€nd t0Mmax (Wheremmin andmmay are the minimum
viscous elements are connected in parallel one has and maximum values afy at the mechanical model

under consideration).
o = Kig™ + K™, (12) In Fig. 6 the theoretical strain rate dependencies of

. . . o, mp- and M,-values are presented. One can see in
One can find a number of physical models in theFig. 6a, that the curve lag = log is concave. The

literature that may be presented as a parallel Combi\-/alues of M- and m.. increase monotonically with
nations of non-linear viscous elements. For instance p p y

the so-called “threshold stress” can be taken intd’ ((';;gf ibr)n A—\tol(él).\;vdSOIj[:iia?éesmsgttl’\llva:tthamill_n:/r\:i]tl‘lhm
consideration in describing the mechanical response min = 718 =~ ' 3

superplastic materials, see, e.g. [32]. In this case on%% 0 (see Fig. 6¢). At largé the elem_ent W|th_ma_X|-
can assumen; — 0.5 On the other hand, recently it oM (Mmax= M, = 1) makes the main contribution,
was reported [33] that Equation (12) (with non-zerp Egrghci‘?ﬁ;jnvjzreselr_\)/izzéiieellzelgﬁqsﬁg _Tg%?;)r;ir::asu
and mp) may be successfully applied to superplastic ; . . = )
aluminium 7075 and Al-4%Ti alloys (the value of the maximum value for intermediate strain rates (Fig. 6c¢).

coefficient of correlation exceeds 0.999 for all exper—siJg?;%léosvg'r?geﬁgu;%g%?;glocnu?\isﬁi égir:;éztli;goasé_
imental curves). Expressions similar to Equation (lzzgmonal elements to the model shown in Fig. 4b and by

are widely used in the mechanics of composites; it ma arvina their relative contributions:.? We have ful-
be used in order to simulate the rheological behaviout. ying " 1a’ ) .
illed a number of additional numerical experiments in

of two-phase titanium alloys as well order to answer this question. We have varied the num-
For the case whennon-linear viscous elements are ber of elements at Etqhe modél (the calculations were
connected in parallel, we have: fulfilled for r =2, 3, 4, 5) as well as their relative con-
r _ tributionsag, araq, - . ., arq and strain rate sensitivity in-
o= Z Kig™ =a10 + a0 +---+ a0, (13)  dexesn;, my, ..., m,. The results of calculations show
i=1 that the values oMp(¢) and my(&) increase mono-
whereq; = 0 /o is the contribution of-th element to  tonically frommmin = min{m; } to Mmax= max{m; } for
the total stress. Let, for some reference peipt o (£q), all cases cons_ider_ed. Thus, we have c_oncluded that the
the contributions be equal tag, arzg, - - - , orq reSpec- parallel combinations of non-linear viscous elements
tively, then one can rewrite Equation 13 as follows ~ are always characterised by a concave (that is, non-
. sigmoidal) logr — logé& curve for arbitrarym; > 0 and
— CEmo_ Fm, aig>0(1=1,2,...,r). Hence, the physical models
7= ;a'qé =& (14) ba?sed upon the hypothesis of simple additivity of the
_ stresses due to different mechanisms (similar to Eq. 12)
whereo =0 /0q, £ =& /&3, M, is an effective value of  are not capable of describing the sigmoidal curve of SP
the strain rate sensitivity indexy, for a combination
under consideration. The contributions of elements de

pends upon strain rate. One can obtain that 3.3. Mixed combinations (Fig. 4c)

If one compares Figs 5b and 6b, one could conclude
oi g ) that series and parallel connection are characterised by
o =_—=diqg=, 1=12..r (15)  monotonic dependencids(log£) andm(log€). Actu-

— ally, the M¢(log&) andm¢(logé&) plots are decreasing
where¢ is the solution of the transcendental Eq. (14).0nes whileM p(|ogg) andmp(k)gg) curves are increas-
Substituting Equation 14 into Equation 2 we obtain  jng ones. Hence, one can expect that the mixed combi-

_ _ _ nation allows to give some intermediate non-monotonic
_ongME™ + apgMpE™? + -+ arqmrE™ dependencies af(log £) andM(log £). There are only
B oa1pE™ + oM + -+ o gE™ ’ afew examples in the literature where such mixed com-
(16) binations are considered. Zehr and Backofen [34] have
considered a mixed combination in order to describe the
mechanical response of the superplastic lead—tin eutec-
tic alloy. Recently Perevezentceval. have suggested
a new physical model of the SP phenomenon [14],
* It should be noted, that for the limiting casg — 0 the following un- Wh.ICh descr!bes the sigmoidal variation @f\{VI'Fh §.
certainty takes place: if &t 0 andm; — O the value o — K120,  1Nhis model is rather cumbersome and so it is not an
then att =0 whenm — 0 the flow stress =0. easy task to proceed using all the calculations presented

Mp
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Figure 6 Theoretical dependencies calculated for the parallel combination of non-linear viscous elements @jtim; =1, my =0.5, m3 =0.1,
a1q=0.25, apq= 0.5, a3q=0.25: (a) stress—strain rate curve (Equation 14);Ng)¢) curve (solid line—Equation 16) anu (&) curve (dashed
line—Equation 14’); (c) contributions; (Equation 15).

in [14]. Nevertheless, proceeding from a number ofwhere; (i =1, 2, 3) are the strain rates oth element;
other publications of Perevethentahal.one can con- Kj, m; (i =1, 2, 3) are the material constants. One can
clude that they are using the principle of mixed con-write the following relationships. For some reference
nection in summing the strain rates corresponding t@ointo = o (&) we obtain

different micromechanisms. Such an approach enables

them to describ_e the experimental sigmoidal curve for o0 = Ki&jm + Ko&x? = a1000 + 02000,

titanium alloy Ti-6Al-4V, which has been reported by

Ghosh [35]. That is why it is of interest to consider §o = &10 + &30 = P10So + Baobo- (19)
other possible ways to combine the non-linear viscous

elements into the mechanical model. Taking into account Equation 19 one can find from

Let us consider the mixed combination consisting ofEquation 18:
three elements (Fig. 4c). The behaviour of this combi-

nation is described by the following equations: _  o10,— — ag — — 1 - —
Y g€ &= T ™ SR (g™ = o E = g™
ﬂlO 1820 ﬂ30
— K my K my K m3 _ (20)
o = Kag "+ Kabp" = Kasz ™, wheres = o /g, £ = £ /£ and it is taken into account
§&1=56, &E=&1+6&;, (18) thaté& =& =¢& —&;. It is easy to see that for a given
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Figure 7 Strain rate dependencies/df-values (solid lines) andh-values (dashed lines) calculated in accordance with Equations 6, 7, 20 and 21 with
two different sets of material constants: (a) =1; my; =0.5; m3 =0.1 ¢30=0.5; B10=0.5 (M, andmp-curves); (b)m; =1; my=0.1; m3=0.5
a10=0.5; B10=0.5 (M andmp,-curves).M, andmy-curves have been calculated with= 0.5 andMpmax=1.

(@)

value of the strain raté Equation 20 represents a tran- TABLE | Sets of material constants for Equations 20 and 21 allowing
scendental equation as to the unknown fun(ftpﬁ'he one to describe the universal superplastic curve shown in Fig. 2b
value ofM for a mixed model may be found as follows:

my my m3 ai1o a0 B1o B20 A
1 _ &3 1 0,18 0,26 094 006 09999 0,000l 0,05
Mm(E) ~ mgé 1 0,1 046 0,96 004 0,97 0,03 0,05
- _ 1 0,4 025 0,87 013 0,9999 0,0001 0,09
£3° 1-—&3/& 1 0,3 025 090 010 09999 0,0001 0,06
ms ~ m oo m’ 1 033 025 088 012 09999 0,000l 0,07

o10M — 1 oo0M: — 2

Pao @10 (§ — £3)™ + cr20mz (€ — &) 1 02 05 094 006 092 0,08 0,08

(21)

wheredio=aio/By (i =1, 2), andés is the solution of

Equation 20. One can show that ing the universal superplastic curves with a reasonable

accuracy.
lim Mm(8) = Mc;  lim Mm(€) = Mp; Zehr and Backofen have applied a mixed mechanical
=0 B pa—0 model to eutectic lead-tin alloy [34]. The values of
lim_Mp(§) = mg (22) the material constants; andm; have been determined
sk in [34] empirically from the experimental sigmoidal

i ) i curves. The results obtained in [34] are incorporated
The results of calculations in accordance with Equajnio Table 1. In order to use these data let us substitute

tions 20 and 21 are presented in Fig. 7. One can see iBqation 18 at Equation 2. Then we obtain after some
Fig. 7, that the correspondiridm(logé) dependencies  tansforms:

has non-monotonic character. However, there is a con-

siderable difference betwedvi,(logé) plots and the Mzg =

corresponding universal dependenidy(logé&). That [lelgml + mszgmz]ng

is why we have fulfilled a number of additional calcu- ! 2 16-4

lations with various values of material constants, MiKaEy™ + MpKogy"” + gf g meKa(s — &)™
My, M3, 10, andBio. As a result, good agreement be- (23)

tweenMp(log€) and My(logé) curves as well as be-

tweenmp,(log£) andmy(log£) curves has been found where&; is the solution of the following transcendental
(see Fig. 8). It is to be noted that the set of constantequation:

enabling one to describe adequately the universal su-

perplastic curves is not the only possible one. One can o= Kl.s{m + KZS{"Z = K3(& — &)™ (24)

find a number of other sets in Table I. The last column of

Table I includes the standard mean square deviation The results of calculations in accordance with Equa-
for the results of calculation from the universal super-tions 23 and 24 are presented in Fig. 9. The values of
plastic curve shown in Fig. 2b. Itis evident that one canm; andK; (i =1, 2, 3) used in calculations have been
find some possible sets of material constants descritiaken from Table II.
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Figure 8 Strain rate dependencies Mf-value (a) andn-value (b) for a mixed combination, calculated in accordance with Equations 20 and 21 with
my =1;mp =0.18;m3 = 0.26 ¢10 = 0.94; 810 = 0.9999. For the sake of comparison the corresponding universal curves calculated in accordance with
Equations 6 and 7 witMnax= 1 are presented by dashed lines.

TABLE |l Material constants for Zehr—Backofen model [34]

Element’s properties (units: Ib, in, sec)

do T

Material (uwm) °C) T/Tm K1 my Ko my K3 m3
Pb-Sn 2,0 26 0,65 6,701C° 1 1,15x 10* 0,33 1,27x 10* 0,18
[34] 3,1 2,50x 10° 2,23x 10* 0,33 2,26x 10* 0,24
Pb-Sn 2,0 25 0,65 4,2010° 1 1,11x 10* 0,33 1,9x 10* 0,21
[35]

Pb-Sn 2,2 25 0,65 1,6610° 1 1,27x 10* 0,34 1,68x 10* 0,25
[36] 4,1 1,06x 107 8,47x 10° 0,28 2,2x 10* 0,25
Al-Cu 2,3 520 0,97 2,% 10° 1 2,63x 10° 0,33 1,17x 10* 0,25
[37] 7,7 2,46x 10° 2,77x 107 0,11 3,54x 104 0,39

It is pertinent to note that for the case when all biguous determination of the material constants of this
non-linear viscous elements contained in the memodel has been presented and validated by analysing
chanical model under consideration have the sam¢he experimental data pertaining to a few systems in
value of the strain rate sensitivity index (that is, [38]. It was shown that this method allows the deter-
my =mp = --- =mg) then independently of the type mination of the material constants with a limited num-
of connection the following relationships take place:ber of experimental points. A comparison of the pre-
M =m=mg. This fact is a consequence of Equa-dictions with the experimental results shows that this
tions 8a, 10, 14, 16, 20 and 21. model describes optimal superplastic flow (Regions |

and Il up to the point of inflection in the sigmoidal

logo — logé& curve) accurately. The shape of the uni-
4. Discussion versalM-curve on the left hand side @k is similar
The results obtained enable us to conclude that foto that of the theoretical curves calculated within the
the case of serial (Fig. 4a) or parallel (Fig. 4b) con-framework of Padmanabhan—Schliepf model for dif-
nection, the resulting log—logé curve are not sig- ferent alloys (see Fig. 10). The curves actually coin-
moidal irrespective of the number of elements con-cide (true universal curves) when the/(T,) ratios are
tained in the mechanical model under consideration. Asimilar. But the shapes are different on the right hand
the same time the mechanical model with mixed conside of&q. It was found in [38] that the mechanical
nection (Fig. 4c) enables one to describe adequately thenalogue of Padmanabhan—Schliepf model of the SP
universal sigmoidal curve shown in Fig. 2b. phenomenon [16] includes two dashpots (one of which

Recently Padmanabhan and Schliepf have presentésl Newtonian viscous) in series connected to a constant
an analysis of the boundary sliding process [16], whichstress term in parallel (see Fig. 10).
leads to new model for GBS controlled optimal struc- It was established in [38] that a ‘universal curve’
tural SP. A numerical procedure that allows the unamfor superplastic flow existgrovidedthe (M/Mmax) VS.
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Figure 9 Sigmoidal superplastic curves and corresponding dependencies of theirlglapethe strain rate calculated in accordance with Equations
23 and 24 for eutectic alloys lead—tin (a) and aluminium—copper (b).

log(&/&0py) plot is made at constanf( Ty, ratio. In  given to this in the literature. At the same time the con-
other words, the value of the paramet&'rat the right  traction of Region Il withT is as universal a fact for
side of Equations 6 and 7, in general, depends upon tenthe phenomenology of the SP phenomenon as the sig-
perature. Typical values of’ according to [38] turned moidal variation of the flow stress with strain rate. That
out to be of about 0.5-0.7 for a number of aluminium-is why it is very important to keep in mind this circum-
base alloys. We have fulfilled a number of additionalstance when constructing adequate models of the SP
calculations witta = 0.7. It was found that mixed com- phenomenon. Empirically, the narrowing of Region Il
binations allows one to describe the corresponding uniwith T can be described by use of Equations 6 or 7
versal curves witlh = 0.7 as well (see Fig. 11). We have where the value ofd’ depends upo (see Fig. 11).
reported earlier some results of the calculations similait is pertinent to note that the physical reasons for ex-
to above considered [39]. In this work the value of pa-istence of such phenomenon can be clearly explained
rameter &' in Equation 6 has been occasionally takenwithin the framework of the new concept of the SP
equal to 0.25 and a good agreement was found for thphenomenon, which is developed in [24].
set of material constants; =1; m,=0.2; m3=0.5, The results obtained in the present work indicate that
a10=0.99, B10=0.99. there is a problem in taking into account the simul-
It is to be emphasized that the narrowing of the op-taneous action of different deformation mechanisms.
timum strain rate interval (the contraction of Region Il It is not yet clear what kind of summation is to be
in Fig. 1b) with temperature of deformation is a typi- used in doing so. For example, one can use the ad-
cal experimental fact. Unfortunately, little attention is ditivity of the strain rates corresponding to different
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micromechanisms similar to Equation 4. In this caseo consider some intermediate situations as well (e.g.,
the stress is assumed to be the same for all micromeclmechanical models shown in Figs 4c and 10).

anisms involved while each of them contributes to the

net value of the strain rate. On the contrary, itis possible
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